Factorization of Prime Ideal Extensions in Number Rings
نویسنده
چکیده
Following an idea of Kronecker, we describe a method for factoring prime ideal extensions in number rings. The method needs factorization of polynomials in many variables over finite fields, but it works for any prime and any number field extension. Introduction Let F c K be number fields, let ¿fp c where a\, ... , an is an integral basis of (?% . Surprisingly, this work seems to be nearly forgotten and almost generally unknown. In this paper we give a modern version of the theorem of Kronecker-Hensel Received June 21, 1990; revised November 20, 1990. 1991 Mathematics Subject Classification. Primary 11R27; Secondary 11Y05. ©1992 American Mathematical Society 0025-5718/92 $1.00+ $.25 per page
منابع مشابه
Inert Module Extensions, Multiplicatively Closed Subsets Conserving Cyclic Submodules and Factorization in Modules
Introduction Suppose that is a commutative ring with identity, is a unitary -module and is a multiplicatively closed subset of . Factorization theory in commutative rings, which has a long history, still gets the attention of many researchers. Although at first, the focus of this theory was factorization properties of elements in integral domains, in the late nineties the theory was gener...
متن کاملVAGUE RINGS AND VAGUE IDEALS
In this paper, various elementary properties of vague rings are obtained. Furthermore, the concepts of vague subring, vague ideal, vague prime ideal and vague maximal ideal are introduced, and the validity of some relevant classical results in these settings are investigated.
متن کاملFUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS
In this paper, for a complete lattice L, we introduce interval-valued L-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.
متن کاملI-prime ideals
In this paper, we introduce a new generalization of weakly prime ideals called $I$-prime. Suppose $R$ is a commutative ring with identity and $I$ a fixed ideal of $R$. A proper ideal $P$ of $R$ is $I$-prime if for $a, b in R$ with $ab in P-IP$ implies either $a in P$ or $b in P$. We give some characterizations of $I$-prime ideals and study some of its properties. Moreover, we give conditions ...
متن کاملPseudo-Valuation Near ring and Pseudo-Valuation N-group in Near Rings
In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of , for any multiplication subset S of...
متن کامل